

CMS Connector API - Sitecore

The document describes migration-sitecore, a Node.js utility package designed to
facilitate the migration of Sitecore content to another system. It details various modules within
the package, including those for extracting locales, configuration, content types, and reference
mappings. The document also outlines the project structure, explains the functionality of key
functions like "extractLocales" and "ContentTypeSchema," and discusses the "ExtractRef"
function for handling content references. Finally, it covers the "Sitecore Validator," which
ensures that required folder structures are present before migration, and highlights limitations
regarding content type migration in test stacks.

📦 migration-sitecore
A Node.js utility package designed to support the migration of Sitecore content. It provides
functionality to extract content types, configuration, locale files, and reference mappings from a
Sitecore structure.

📁 Modules

1.extractLocales(directoryPath)

Description:​
 Extracts locale-specific content from the Sitecore content tree.

Parameters:

●​ directoryPath (string) – Path to the Sitecore content folder (usually ends in
/content).​

Returns:​
 A Promise that resolves when locale extraction is complete.

2. ExtractConfiguration(directoryPath)

Description:​
 Extracts configuration files or values from the specified Sitecore project directory.

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com.

https://docs.google.com/document/d/11M9OUyaAO5eu3Wt-V5hhLzis7ExFhdhJqG-4XY4aOHs/edit?tab=t.x0z9maam8a8t
mailto:tso-migration@contentstack.com

●​ directoryPath (string) – Base directory where Sitecore configuration is located.​

Returns:​
 A Promise.

3. contentTypes(directoryPath, affix, config)

Description:​
 Parses content types from the Sitecore project and transforms them based on provided
configuration.

Parameters:

●​ directoryPath (string) – Path where content types are located.​

●​ affix (string) – A suffix/prefix used for naming or filtering.​

●​ config (object) – Configuration object for processing.​

Returns:​
 A Promise.

4. reference()

Description:​
 Generates a reference map used for linking related items during migration.

Returns:​
 A Promise that resolves with a reference map object.

5. ExtractFiles (utility/module)

Description:​
 Utility module for converting XML to JSON.

🗂 Project Structure

If you have any questions, please reach out to tso-migration@contentstack.com.

https://docs.google.com/document/d/11M9OUyaAO5eu3Wt-V5hhLzis7ExFhdhJqG-4XY4aOHs/edit?tab=t.k5ttec5n2le9
https://docs.google.com/document/d/11M9OUyaAO5eu3Wt-V5hhLzis7ExFhdhJqG-4XY4aOHs/edit?tab=t.4z3ryvrx6r8p
mailto:tso-migration@contentstack.com

JavaScript

migration-sitecore/

├── libs/

│ ├── contenttypes.js

│ ├── configuration.js

│ ├── reference.js

│ ├── convert.js

│ └── extractLocales.js

├── index.js

📄 extractLocales – Locale Extraction Utility

Function: extractLocales(dir)

The extractLocales function scans a directory (and its subdirectories) for data.json files,
extracts locale codes from them, and returns a set of all unique locale/language codes found.
These locales are typically used to map language content from a legacy CMS to Contentstack.

📦 Dependencies

●​ fs (Node.js built-in): For reading files.​

●​ path (Node.js built-in): For resolving file paths across different operating systems.​

🛠️ Parameters

●​ dir (string): Path to the root directory that contains the JSON files generated from an
XML export. This should be the starting point for recursive traversal.​

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

🔁 Behavior

●​ Recursively traverses the directory to find data.json files.​

●​ Validates paths and file formats.​

●​ Extracts locale codes from valid JSON files.​

●​ Accumulates and returns a Set of unique locale codes (e.g., 'en-us', 'fr-fr').​

●​ Returns an empty set [] if no locales are found.​

●​ Handles and logs any file or parsing errors.​

✅ Returns

●​ Set<string> – A set of unique locale codes.​

●​ Returns new Set() if none are found or if an error occurs.

📄 ContentTypeSchema – Field Type Mapper

Function: ContentTypeSchema({ type, name, uid, default_value, id,
choices, sourLet, sitecoreKey, affix })

The ContentTypeSchema function maps legacy CMS field definitions (primarily from Sitecore)
to Contentstack-compatible schema objects. It handles field type normalization, UID
adjustments, and schema formatting for a wide range of input types.

🧩 Core Purpose

Transforms an input field (defined by its type, name, and other metadata) into a structured
object that matches Contentstack's content type schema format. Used during automated
schema migration.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

🛠️ Parameters

●​ type (string) – Field type from the source system (e.g., 'Single-Line Text',
'Droplist', etc.).​

●​ name (string) – Display name or label of the field.​

●​ uid (string) – Unique identifier, optionally prefixed.​

●​ default_value (string) – Default value assigned to the field.​

●​ id (string | number) – Internal ID or identifier.​

●​ choices (array) – List of options, used for dropdown-type fields.​

●​ sourLet (object) – Optional metadata related to source mappings.​

●​ sitecoreKey (string) – Original field identifier in Sitecore.​

●​ affix (string) – Optional string to prepend to UIDs that match restricted names.​

🔁 Behavior

●​ Adds an affix to UIDs if the UID is in a restricted list.​

●​ Uses a large switch-case to match field types and output the appropriate
Contentstack schema definition.​

●​ Handles common field types such as:​

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

○​ single_line_text​

○​ multi_line_text​

○​ boolean​

○​ html​

○​ number​

○​ file​

○​ dropdown​

○​ link​

○​ isodate​

○​ extension​

●​ Fields not mapped or unsupported are skipped or logged.​

✅ Returns

An object formatted for Contentstack schema import, typically including:

●​ id, uid, otherCmsField, otherCmsType​

●​ contentstackField, contentstackFieldUid, contentstackFieldType​

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

●​ backupFieldType, backupFieldUid​

●​ advanced: Includes default_value or options where relevant​

If the field type is unsupported or intentionally skipped, it returns undefined.

Key Type Description Example

id string Internal ID of the field, typically
used for internal tracking or
reference.

"123"

uid string UID from Sitecore
(sitecoreKey), used to
maintain link to source field.

"sc_title"

otherCmsField string Original field name from the
legacy CMS.

"Title"

otherCmsType string Type of the field in the source
CMS (e.g., Sitecore field type).

"Single-Line
Text"

contentstackField string Field name as it will appear in
Contentstack. Usually the same
name.

"Title"

contentstackFieldU
id

string UID used by Contentstack to
uniquely identify the field.

"title"

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

contentstackFieldT
ype

string Mapped Contentstack field
type. For text input fields, it is
'single_line_text'.

"single_line_te
xt"

backupFieldType string Backup type for internal
validation or fallbacks. Mirrors
the main type.

"single_line_te
xt"

backupFieldUid string Backup UID for traceability,
usually the same as
contentstackFieldUid.

"title"

advanced.default_v
alue

string
| null

Default value for the field. If not
provided, it’s null.

"Default Title"
or null

📄 ExtractRef​
​
Overview:

The ExtractRef function is a critical component in a data migration process, specifically for
migrating content between two systems (e.g., from a legacy Sitecore CMS to Contentstack).
The primary responsibility of this function is to handle the extraction, transformation, and
mapping of content references between different content types and global fields, ensuring the
migration data is properly formatted for use in Contentstack.

This function does the following:

1.​ Reads Configuration Files: It loads configuration files like base.json,
contentTypeKey.json, and treeListRef.json to establish the relationships and
references between content types and fields.​

2.​ Processes Content Types: Iterates through the content types to identify references and
global fields and applies necessary transformations (e.g., UID corrections, reference
mappings).​

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

3.​ Updates the Data: Writes the transformed data back to files, ensuring the proper
structure and format for later use.​

4.​ Deletes Processed Files: Cleans up by deleting the original content type files after
processing.​

5.​ Returns Path and UIDs: Provides a summary of the processed data, including paths
and lists of content type and global field UIDs.​

The function is primarily used to prepare content for migration by resolving field references,
correcting UIDs, and making sure the data aligns with Contentstack's structure.

Detailed Breakdown:

1. Clearing Old Data (emptyGlobalFiled):

●​ The first operation is clearing the existing global field data, which ensures that the
function starts with a clean slate.​

●​ emptyGlobalFiled(); clears the existing global field mappings before processing
new data.​

2. Reading Configuration Files:

The function then loads the following files using helper.readFile:

●​ base.json: Contains data on base pages. This is important because some content
types may have references to base pages that need to be resolved.​

●​ contentTypeKey.json: This file maps content type keys to their corresponding UIDs.
These mappings are essential for establishing relationships between content types.​

●​ treeListRef.json: Contains references for tree structures. It helps identify which
content types have references to others, allowing the function to map them properly.​

3. Initializing Key Variables:

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

●​ globalFieldUids: An empty array is initialized to collect unique global field UIDs.​

●​ contentTypesPaths: This variable holds an array of content type file paths, which the
function will iterate over to process the content types.​

4. Processing Each Content Type:

●​ The function checks if there are valid content types and references (base.json,
contentTypeKey.json, or treeListRef.json). If so, it proceeds to loop through
each content type and process it.​

Inside the loop:

●​ Reading Content Type Files: For each content type, the corresponding JSON file is
read.​

●​ Handling References in treeListRef.json:​

○​ If the content type has references defined in treeListRef.json (specifically in
refTree.unique), the function maps these references using the keys in
contentTypeKey.json.​

○​ If valid UIDs are found, the function corrects the UID if necessary and creates a
reference mapping (schemaObject). This is then added to the content type's
field mapping.​

●​ Handling Base Pages:​

○​ The function checks if the content type has associated base pages (from
base.json).​

○​ If base page references exist, the function splits them, looks up their
corresponding UIDs, and creates global field mappings for them.​

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

●​ Writing the Updated Content Type Data: After processing each content type, the
function writes the updated data back to disk using helper.writeFile.​

5. Handling Global Field UIDs:

After processing all the content types, the function proceeds to manage global field references:

●​ Unique Global Field UIDs: It collects the unique global field UIDs by removing
duplicates (new Set(globalFieldUids)).​

●​ Reading Existing Global Fields: It reads existing global fields from
GLOBAL_FIELDS_FILE.​

●​ Adding New Global Fields: It adds new global fields for the references identified in the
base page references.​

●​ Cleaning Field Mappings: For each global field, it removes unwanted fields such as
title and url to ensure only valid fields remain in the global field mappings.​

●​ Writing Updated Global Fields: The function writes the cleaned-up global field data
back to the global fields directory.​

6. Deleting Processed Content Type Files:

After processing each content type and writing the updated data, the function deletes the
original content type files to avoid redundant files in the working directory.

7. Returning Processed Data:

Finally, the function returns an object containing:

●​ Path: The base path where the migration data is stored.​

●​ Content Type UIDs: A list of content type UIDs that have been processed.​

●​ Global Field UIDs: A list of global field UIDs that have been referenced during the
migration.​

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

Key Concepts:

1.​ UID Correction: UIDs are unique identifiers for content types and fields. The function
ensures that if a UID is already in use, it will append "_changed" to create a new
unique identifier. This prevents collisions during the migration process.​

2.​ Field Mappings: The function builds mappings between legacy CMS content (in the
form of JSON data) and Contentstack fields. This is essential for maintaining
relationships and references when migrating content.​

3.​ Data Integrity: It ensures that references between content types, fields, and global fields
are correctly mapped, maintaining the integrity of the migrated content.​

4.​ File Management: By reading, writing, and deleting files as needed, the function keeps
the migration process clean and efficient.​

⚙️ Validator Sitecore

 🧾 Overview
The Sitecore Validator checks whether essential folder structures (/templates, /content,
/blob, /media library, etc.) are present in a provided Sitecore project ZIP or file structure.
This function ensures that all required directories are available before starting a Sitecore content
migration or transformation pipeline.

🔧 Function: sitecoreValidator({ data }: props)

Description:

Validates that all required Sitecore folders exist within the files object provided, including
templates, content, blobs, and media library files.

Parameters:

●​ data (object): A props object containing a files map representing file paths
extracted from Sitecore export

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

Returns:

✅ true if:

1.​ All of the following directories have at least one file:

●​ /templates

●​ /content

●​ /blob

●​ /media library

❌ false if:

●​ One or more required directories are missing.

●​ An exception occurs during execution.

🔧 Internal Logic

1.​ Extract filenames from file map

for (const filename of Object.keys(data?.files)) {

1.​ Iterates through all filenames in the provided data.files object.

2.​ Iterate over config properties

if (filename.includes('/templates') &&
!filename.includes('properties/items/master/sitecore/templates')) { ... }

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

1.​ Collects paths into arrays based on folder type:

●​ templates

●​ content

●​ Configuration (optional)

●​ blob

●​ media library

3.​ Await Promises (fallback for any async I/O)

​

templates = await Promise.all(templates);

1.​ Resolves all path arrays (in case they contain promises or async resolution is

needed).

4.​ Validate Required Sections

if (templates?.length > 0 && content?.length > 0 && blob?.length > 0 &&
mediaLibrary?.length > 0) {

 return true;

}

return false;

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

1.​ Returns true only if all required folder categories have files.

5.​❗ Error Handling

try { ... } catch (err) {

 console.info('🚀 ~ sitecoreValidator ~ err:', err);

 return false;

}

1.​ Any unexpected error is caught and logged.

2.​ Validator fails gracefully by returning false.

✅ Example Usage

import sitecoreValidator from './validators/sitecore-validator';

const zipData = {

 files: {

 '/templates/article.yml': {},

 '/content/articles.json': {},

 '/blob/media1.png': {},

 '/media library/image1.jpg': {}

 }

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

Shell

Shell

};

if (await sitecoreValidator({ data: zipData })) {

 console.log('✅ Sitecore structure is valid!');

} else {

 console.error('❌ Sitecore structure is invalid or incomplete.');

}

Running the upload-api Project on Any Operating
System
The following instructions will guide you in running the upload-api folder on any operating
system, including Windows and macOS.

Starting the upload-api Project

There are two methods to start the upload-api project:

Method 1:​
 Run the following command from the root directory of your project:

npm run upload

This command will directly start the upload-api package.

Method 2:​
 Navigate to the upload-api directory manually and run the development server:

cd upload-api

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

npm run start

This approach starts the upload-api from within its own directory.

Restarting After Termination

If the project terminates unexpectedly, you can restart it by following the same steps outlined
above. Choose either Method 1 or Method 2 to relaunch the service.

Limitations

1.​ Not handle the use case of deletion of existing destination stack in runtime

2.​ Content Type Migration Limitations in Test Stacks

When migrating content types in a test stack, the handling of attached references
depends on your organization's reference limit:

●​ Organizations with a reference limit of 50: Full data migration is supported if a
content type has more than 10 references.

●​ Organizations with a reference limit of 10: If a content type has more than 10
references, only the 'title' and 'URL' fields will be migrated.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

	CMS Connector API - Sitecore
	📦 migration-sitecore
	📁 Modules
	1.extractLocales(directoryPath)
	2. ExtractConfiguration(directoryPath)
	3. contentTypes(directoryPath, affix, config)
	4. reference()
	5. ExtractFiles (utility/module)
	📄 extractLocales – Locale Extraction Utility
	📦 Dependencies
	🛠️ Parameters
	🔁 Behavior
	✅ Returns

	📄 ContentTypeSchema – Field Type Mapper
	🧩 Core Purpose
	🛠️ Parameters
	🔁 Behavior
	✅ Returns

	📄 ExtractRef​​Overview:
	Detailed Breakdown:
	1. Clearing Old Data (emptyGlobalFiled):
	2. Reading Configuration Files:
	3. Initializing Key Variables:
	4. Processing Each Content Type:
	5. Handling Global Field UIDs:
	6. Deleting Processed Content Type Files:
	7. Returning Processed Data:

	Key Concepts:

	⚙️ Validator Sitecore
	 🧾 Overview
	🔧 Function: sitecoreValidator({ data }: props)
	Description:
	Parameters:
	Returns:

	🔧 Internal Logic
	1.​Extract filenames from file map
	2.​Iterate over config properties
	3.​Await Promises (fallback for any async I/O)
	4.​Validate Required Sections
	5.​❗ Error Handling

	✅ Example Usage
	Running the upload-api Project on Any Operating System
	Starting the upload-api Project
	Restarting After Termination
	Limitations

